Skew-trapezoidal bipyramidal diorganotin(IV) bischelates. Crystal structure of dimethylbis(2-pyridinethiolato-*N*-oxide)tin(IV)

Seik Weng Ng ^a, Chen Wei ^b, V.G. Komar Das ^{b*}

^a Institute of Advanced Studies and ^b Department of Chemistry, University of Malaya, 59100 Kuala Lumpur (Malaysia)

and Thomas C.W. Mak*

Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories (Hong Kong) (Received April 8th, 1987)

Abstract

Dimethylbis(2-pyridinethiolato-N-oxide)tin(IV), Me₂Sn(2-SPyO)₂, crystallizes in space group $P2_1/c$ with a 9.877(3), b 11.980(4), c 13.577(3) Å, β 109.1(2)° and Z = 4. The structure was refined to $R_F = 0.036$ for 2263 Mo- K_{α} observed reflections. The coordination geometry at tin is a skew-trapezoidal bipyramid, with the oxygen [Sn–O 2.356(3), 2.410(4) Å] and sulfur [Sn–S 2.536(1), 2.566(1) Å] atoms of the chelating groups occupying the trapezoidal plane and the methyl groups [Sn–C 2.106(6), 2.128(7) Å] occupying the apical positions. The methyl-tin-methyl skeleton is bent [C–Sn–C 138.9(2)°]. The S–Sn–S angle is 77.8(1)°, but the O–Sn–O angle is opened to 136.7(1)° to accommodate the intruding methyl groups. The carbon-tin-carbon angles predicted from quadrupole splitting (^{119m}Sn Mössbauer) and one-bond ¹¹⁹Sn–¹³C coupling constant (solution ¹³C NMR) data agree closely with the experimental value.

Introduction

Although there are many examples of six-coordinated diorganotin(IV) bischelates in the literature, the factors governing the geometry at the tin center are not well-understood. The C₂Sn skeletal configurations in these structures have been described, often vaguely, as being distorted *cis* or *trans*, with little identification of the influence exerted by the chelate moieties on the stereochemical disposition of the Sn–C bonds. For the six-coordinate $R_2Sn(A-B)_2$ compound, where A–B represents a uninegative bidentate chelate with the negative charge residing on B, a distorted octahedral geometry with carbon-tin-carbon bond angles lying in the range 135–155° has been given the label 'skew-trapezoidal bipyramid' [1]. Carbon-tin-carbon angles have been correlated with the ^{119m}Sn Mössbauer

quadrupole splitting values [2] and very recently, with one-bond ¹¹⁹Sn ¹³C NMR coupling constants [3]; these spectral parameters appear to respond in an orderly way to hybridization and related changes at the tin atom.

The skew-trapezoidal bipyramid can be envisaged as a distortion of a regular trans octahedron, characterized by an opening of the A-Sn-A angle and inclination of the Sn-R bonds towards the A-A edge. Additional widening of the A-Sn-A angle and elongation of the $Sn \cdot A$ bonds lead eventually to a tetrahedral geometry. This distortion from the O_h towards the STB geometry is especially favored if the chelate bite angle (A-Sn-B) is small [4,5]. For Me₃Sn(acac), (acac = actvlacetonate) [6], n-Bu₂Sn(dbzm), (dbzm = anion of dibenzovlmethane) [7] and Ph₂Sn[S₂P(O-i- Pr_{2} [8] where the bite angles are large (76-86°), undistorted *trans*-[R₂Sn] angles of 180° have been found. The bischelates Me₂Sn(trop)₂ (trop - tropolonate) [9]. $Me_{Sn}[MeC(O)N(H)O]_{2}$ [10], $Me_{Sn}(Oxin)_{2}$ (Oxin = 8-hydroxyquinolinate) [11], $Me[(Me_3Si)_3CH[Sn(Oxin)_3 = [12], (p-ClC_6H_4)(p-MeC_6H_4)Sn(Oxin)_3 = [13] and$ $Ph_{Sn}(S_{SCNEt_{2}})$, [14] are distorted towards the *cis* configuration. with C Sn - Cangles between 101 and 109°. Intermediate 'trans' values for the R₃Sn angle in the range 122-157° have been reported for Me₂Sn[MeC(O)N(H)O], H₂O [10], $Me_{2}Sn[MeC(O)N(Me)O]_{2}$ [15], $Me_{3}Sn(NO_{3})_{2}$ [16], $Et(n-Pr)Sn(MeOxin)_{3}$ (MeOxin) = 2-methyl-8-hydroxyquinolinate) [17], $Me_3Sn(S_3COEt)$, [18], $Me_3Sn(S_3CNMe_3)$, [19], $Me_2Sn(S_2CNEt_2)_2$ (three crystal modifications) [20.21], $Me_2Sn[S_2CN(CH_2)_4]_2$ [22]. n-Bu $_{3}$ Sn[S $_{3}$ CN(C $_{4}$ H $_{8}$)O] $_{5}$ [23]. Me $_{3}$ Sn(S $_{3}$ PMe $_{3}$) $_{5}$ [24]. Me $_{3}$ Sn(S $_{5}$ PO $_{5}$ C $_{5}$ Me $_{4}$) $_{5}$ [25], $Ph_3Sn[S_3P(OEt)_3]_3$, [26], $Me_3Sn(S_2AsMe_3)_3$, [27] and $n-Bu_3Sn(5-NO_3-2-SPv)_3$ (2-SPy = 2-pyridinethiolate) [28]. The Sn-S (3.515 Å) and Sn-N (2.77 Å) bonds in the last two examples are long enough for the molecules to be essentially four-coordinate *.

When a chelate binds to a triorganotin, as in $Ph_3Sn(dbzm)$ [29], $Me_3Sn[PhC-(O)N(Ph)O]$ [30], $Ph_3Sn[PhC(O)N(Ph)O]$ [31] and $Ph_3Sn(8-quinolinethiolate)$ [32], *cis*-trigonal bipyramidal geometries are observed. However, a unique square pyramidal geometry at tin has been found in tribenzyl(2-pyridinethiolato-*N*-oxide)tin (see preceding paper). The structure of $Me_2Sn(2-SPyO)_2$ (2-SPyO = anion of 2-pyridinethiol *N*-oxide) was determined to find out if the geometry at tin in this species might also be unusual.

^{*} Note added in proof: A long Sn ··· S bond of 3.607 Å has recently been reported (O.-S. Jung, Y.S. Sohn and J.A. Ibers, Inorg. Chem., 25 (1986) 2273) in trigonal bipyramidal [t-Bu₂SnSC(S)-NHCH₂CH₂NHC(S)S]₂·4THF.

Table 1

Data collection and processing parameters for dimethylbis(2-pyridinethiolato-N-oxide)tin(IV)

Molecular formula	$C_{12}H_{14}N_2O_2S_2S_n$
Molecular weight	401.07
Cell constants	$a 9.877(3) \text{ \AA} \qquad \beta 109.01(2)^{\circ}$
	b 11.980(4) Å V 1518.9(7) Å ³
	$c 13.577(3) \text{ Å} \qquad Z = 4$
Density (exptl)	1.75 g cm ⁻³ (flotation in $ZnBr_2/H_2O$)
Density (calcd)	1.754 g cm^{-3}
Space group	$P2_1/c$
Radiation	graphite-monochromatized Mo- K_{α} (λ 0.71069 Å)
Absorption coefficient	19.50 cm^{-1}
Crystal size	$0.30 \times 0.26 \times 0.12 \text{ mm}^3$
Mean µr	0.20
Transmission factors	0.598-0.671
Scan speed and type	$\omega - 2\theta$; 2.02-8.37 deg min ⁻¹
Scan range	1° below K_{α_1} to 1° above K_{α_2}
Background counting	stationary counts for $1/2$ scan time at each end of scan
Collection range	$h, k, \pm l; 2\theta_{\max} = 52^{\circ}$
Unique data measured	2673
Observed data with	
$ F_{o} > 3\sigma(F_{o}), n$	2263
Number of variables, p	178
$R_{\rm F} = \sum F_{\rm o} - F_{\rm c} / \sum F_{\rm o} $	0.036
Weighting scheme	$w = [\sigma^{2}(F_{o}) + 0.0005 F_{o} ^{2}]^{-1}$
$R_{\rm G} = \left[\sum w (F_{\rm o} - F_{\rm c})^2 / \sum w F_{\rm o} ^2 \right]^{1/2}$	0.043
$S = \left[\sum w(F_{o} - F_{c})^{2} / (n-p)\right]^{1/2}$	1.296
Residual extremes in final diff, map	+0.63 to -0.54 e Å ⁻³

Table 2

Atomic coordinates ($\times 10^5$ for Sn, $\times 10^4$ for other atoms) for dimethylbis(2-pyridinethiolato-N-oxide)tin(IV)

Atom	x	y	z	
Sn	16619(3)	17790(2)	8431(3)	
S(1)	3740(2)	3178(1)	1386(1)	
S(2)	381(1)	3600(1)	898(1)	
O(1)	3855(4)	766(3)	1083(4)	
O(2)	- 797(4)	1353(3)	356(4)	
N(1)	5113(4)	1223(3)	1547(3)	
N(2)	-1781(4)	2153(3)	90(3)	
C(1)	5242(5)	2343(4)	1720(3)	
C(2)	6594(5)	2767(5)	2156(4)	
C(3)	7776(5)	2077(5)	2422(4)	
C(4)	7617(5)	953(5)	2722(4)	
C(5)	6270(5)	544(4)	1830(4)	
C(6)	-1395(5)	3249(4)	285(4)	
C(7)	- 2473(5)	4043(4)	-6(4)	
C(8)	-3871(5)	3745(4)	-456(4)	
C(9)	-4219(5)	2630(4)	-621(4)	
C(10)	-3157(5)	1845(4)	- 351(3)	
C(11)	1714(8)	886(5)	2210(5)	
C(12)	1390(7)	1457(5)	- 735(5)	

Experimental

The title compound separated out when aqueous solutions of dimethyltin dichloride and sodium 2-pyridinethiolato-*N*-oxide were mixed in a 1/2 molar ratio. Recrystallization of the product from chloroform gave a tan-colored solid, m.p. 199–200 °C. Anal. Found: C 35.94, H 3.50, N 6.58. $C_{12}H_{14}N_2O_2S_2S_1$ calc: C 35.94: H, 3.49; N, 6.99. An identical product was obtained when trimethyltin chloride was treated with a stoichiometric proportion of the sodium salt (Anal. Found: C. 35.84; H, 3.54; N, 6.90). Crystals suitable for X-ray diffraction were obtained upon slow crystallization from chloroform. ¹H NMR (CDCl₃): $\delta(CH_3)$ 0.9 ppm. ²J(¹¹⁹Sn-C-¹H) 82.5 Hz; ¹³C NMR (CDCl₃): $\delta(CH_3)$ 9.9 ppm. ¹J(¹¹⁹Sn-¹³C)

Table 3

Bond lengths (Å), bond angles ($^{\circ}$), and selected torsion angles ($^{\circ}$) for dimethylbis(2-pyridmethiolato-N-oxide)tin(IV)

		ay ay a share an ang it share analy in the second graph the angle of the second state of the second state of the	
Sn-S(1)	2,566(1)	Sn-S(2)	2.536(1)
Sn-O(1)	2.410(4)	SnO(2)	2.356(3)
Sn-C(11)	2.128(7)	Sn~C(12)	2.106(6)
S(1) - C(1)	1.723(5)	S(2)C(6)	1.731(5)
O(1)=N(1)	1.316(5)	O(2) - N(2)	1.328(5)
N(1) = C(1)	1.361(6)	N(2) -C(10)	1.346(6)
N(2) = C(6)	1,369(6)	N(2) - C(10)	1.346(6)
C(1) - C(2)	1.370(6)	C(2) = C(3)	1.380(8)
C(3) - C(4)	1.363(9)	C(4)-C(5)	1.360(7)
C(6) - C(7)	1.385(6)	C(7)C(8)	1.363(2)
C(8) - C(9)	1.379(*)	C(9) = C(10)	1.367(7)
S(1)-Sn-S(2)	77.8(1)	S(1) - Sn - O(1)	72.0(1)
S(2)-Sn-O(1)	149.8(1)	S(1) = Sn = O(2)	151.3(1)
S(2)-Sn-O(2)	73.5(1)	O(1)-Sn-O(2)	136.7(1)
S(1) Sn-C(11)	106.7(2)	S(2) = Sn - C(11)	106.1(2)
O(1)-Sn-C(11)	82.1(2)	O(2) - Sn - C(11)	82 3(2)
S(1)-SnC(12)	103.7(2)	S(2) - Sn - C(12)	106.7(2)
O(1)-Sn-C(12)	81.8(2)	O(2)- Sn-C(12)	84.1(2)
C(11)-Sn-C(12)	138.9(2)	Sn - S(1) - C'(1)	103.6(2)
Sn-S(2)-C(6)	102.3(2)	Sn - O(1) - N(1)	121.5(3)
Sn=O(2)=N(2)	121.1(3)	O(1) - N(1) - C(1)	120.9(4)
O(1)-N(1)-C(5)	117.7(4)	C(1)N(1)-C(5)	121.4(4)
$O(2) \sim N(2) - C(6)$	120.4(3)	O(2) - N(2) - C(10)	117.8(4)
C(6)=N(2)=C(10)	121.7(4)	S(1) = C(1) = N(1)	120.2(3)
S(1)-C(1)-C(2)	122.2(4)	N(1) = C(1) = C(2)	117.6(4)
C(1) = C(2) = C(3)	120.9(5)	C(2) = C(3) = C(4)	120.4(5)
C(3) - C(4) - C(5)	118.0(5)	N(1)C(5)C(4)	121.6(5)
S(2)-C(6)-N((2)	120.1(3)	S(2) - C(6) - C(7)	122.3(3)
N(2) = C(6) = C(7)	117.6(4)	C(6) - C(7) - C(8)	121 4(4)
C(7)=C(8)=C(9)	119.3(5)	C(8) = C(9) = C(10)	119.6(4)
N(2) - C(10) - C(9)	120.4(4)		
Sn-O(1)-N(1)-C(1)	13.3(7)	Sn-O(2)-N(2)-C(6)	- 12.8(6)
O(1) - N(1) - C(1) - S(1) =	2.9(7)	O(2)-N(2)-C(6)-S(2)	- (),9(7)
N(1)-C(1)-S(1)-Sn	7.1(4)	N(2)-C(6)-S(2)-Sn	11.6(5)
C(1) - S(1) - Sn - O(1)	-8.6(2)	C(6)-S(2)-Sn-O(2)	-11.6(2)
S(1)-Sn-O(1)-N(1)	12.8(4)	S(2)=Sn=O(2)=N(2)	14.8(4)

298

Least-se	quares planes ^a					
Plane	Atoms fitted	Equation of	of plane		·	rms
No.		1	m	n	d	$(\text{\AA} \times 10^3)$
1	Sn, C(11), C(12)	0.9874	-0.1241	- 0.0985	1.208	_
2	O(1), O(2), C(11), C(12)	0.1756	0.9718	0.1572	1.629	69
3	S(1), O(1), N(1), C(1)-C(5)	-0.0886	-0.1337	0.9870	-0.175	24
4	S(2), O(2), N(2), C(6)-C(10)	-0.1139	-0.0737	0.9908	0.703	16
5	Sn, S(1), S(2), O(1), O(2)	0.0950	- 0.1589	0.9827	0.410	13
Dihedra	ıl angles between planes ^b					
Planes	Angles (°)		Planes	A	ngles (°)	
1-2	87.9		1-3	9	9.7	
1-4	101.6		1-5	8	9.0	
2-3	89.4		2-4	8	6.3	
2-5	89.0		3-4		3.7	
3-5	10.6		45	1	3.0	

 Table 4

 Least-squares planes and dihedral angles

^{*a*} Plane equation is in the form $lX_0 + mY_0 + nZ_0 = d$, where X_0 , Y_0 , Z_0 are orthogonal coordinates in Å referred to axes x_0 , y_0 , z_0 respectively, with x_0 parallel to a^* , y_0 to *b*, and z_0 to *c*. ^{*b*} Standard deviation approx. 0.7°.

698.2 Hz; $\delta(C_5H_4NS)$ 118.8, 128.6, 129.1, 137.1, 157.2 ppm. Mössbauer data: Isomer shift 1.30, Quadrupole splitting 3.29, Γ_1 1.00, Γ_2 0.99 mm s⁻¹; $d[\ln A_T/\ln A_{80K}]/dT = -1.96 \times 10^{-2} \text{ K}^{-1}$ for $80 \le T \le 130$ (6 points, corr. coeff. = -0.996).

X-Ray crystallography

Diffraction measurements were made on a Nicolet R3m four-circle diffractometer (graphite-monochromatized Mo- K_{α} radiation, λ 0.71069 Å). Details of the experimental and computational methods are as described in the preceding paper. Data collection and processing parameters are summarized in Table 1. Table 2 lists the atomic coordinates and Table 3 the bond lengths and angles and selected torsional angles. Least-squares planes and dihedral angles are given in Table 4. Lists of anisotropic thermal parameters and observed and calculated structure factors are available from the authors.

Results and discussion

X-Ray

Trans-dimethyl-cis-O,O'-cis-S,S'-bis(2-pyridinethiolato-N-oxide)tin(IV) is a discrete monomer as depicted in Fig. 1. The methyl groups subtend an angle of 138.9(2)° at tin, and the C₂Sn plane is orthogonal to the plane containing the tin and the two sets of oxygen and sulfur atoms [dihedral angle 89.0(7)°]. The S(1)-Sn-S(2) angle is 77.8(1)°, but the O(1)-Sn-O(2) angle is opened to 136.7(1)°, as a consequence of the intruding methyl groups. The bite angles of the ligand are 72.0(1) and 73.5(1)°. As shown by the torsional angles (Table 3), the five-membered chelate rings are gauche, with appreciable folding of each planar 2-pyridinethiolate-N-oxide ligand about the corresponding non-bonded O \cdots S line. If it were not for

and a second		(c) is a summary of the second state of the			And a second s		The state of the s	
R 2Sn(chelate) 2	R-Sn-R geometry	R-Sn-R angle (°)	A Sn–A angle (°)	(Thelate bite angle (°)	Sn- C (Å)	Sn X (Á)	Ref.	
Me ₂ Sn(acac) ₂	trans	180	94	86	2.14	2.18, 2.20	6	,
$n-Bu_2Sn(dbzm)_2$	trans	180	96.2	83.8	2.115	2.189, 2.199	7	
Me ₂ Sn(trop) ₂	cis	108.2		72.3, 73.6	2.156, 2.173	2.143, 2.158, 2.180, 2.203	6	
	cis	0.001		72.6, 73.5	2.139, 2.175	2.134, 2.157, 2.177, 2.192		
Me ₂ Sn[MeC(O)N(H)O] ₂	cis	1.09.1		81.5	2.144	2.106, 2.228	10	
$Me_2Sn[MeC(O)N(H)O]_2 \cdot H_2O$	STB	156.7	146.9	70.7, 72.1	2.16, 2.17	2.15, 2.15, 2.35, 2.49	10	
	STB	156.9	146.2	71.5, 71.7	2.14, 2.16	2.16, 2.17, 2.36, 2.43		
Me ₂ Sn[McC(O)N(Me)O] ₂	STB	145.84	144.07	71.11.71.61	2.105, 2.113	2.107, 2.126, 2.374, 2.384	15	
Me ₂ Sn(NO ₃) ₂	STB	143.6	176.3	54.0, 55.1	2.11, 2.12	2.15, 2.17, 2.42, 2.70	16	
Me ₂ Sn(Oxin) ₂	cis	110.7	:	73.4, 73.7	2.15, 2.17	2.10, 2.11 (X = O)	11	
						2.31, 2.38 (X = N)		
Et(n-Pr)Sn(2-MeOxin) ₂	STB	145.2	139.3	70.2, 70.9	2.089, 2.145	2.066, 2.066 (X = 0)	17	
						$2.542, 2.597 (\mathbf{X} = \mathbf{N})$		
Me[(Me ₃ Si) ₂ CH]Sn(Oxin) ₂	cis	109.7			2.131, 2.172	2.078, 2.107 (X = O)	12	
$(p-C)C_6H_4)(p-tolyl)Sn(Oxin)_2$	cis	106.8		74.59	2.140, 2.140	2.084 (X = 0)	13	
						2.322 (X = N)		
$Me_2Sn(S_2COEt)_2$	STB	1.30.1	150.31	62.49, 63.68	1117	2.486, 2.501, 3.088, 3.151	18	
Me ₂ Sa(S ₂ CNMe ₂) ₂ Me,Sn(S,CNEt,),	STB	136	149.1	63.5, 65.1	2.13.2.16	2.497, 2.515, 2.954, 3.061	19	
(monoclinic)	(STB	136.9	149.3	64.1, 64.6	2.12, 2.15	2.512, 2.524, 2.932, 3.004	20	
	(STB	142.8	146.8	64.6	2.13	2.520, 2.947		
(triclinic)	STB	142.3	147.7	64.6, 65.0	2.103, 2.133	2.518, 2.536, 2.918, 2.969	20	
(orthorhombic)	STB	135.6	149.20	63.43, 65.46	2.109, 2.123	2,488, 2,515, 2,938, 3,054	21	

.

.

Structural data for diorganotin bischelates a

Table 5

$Me_{2}Sn[S_{2}CN(CH_{2})_{4}]_{2}$	STB	137.3	144.88	65.43	2.112	2.518, 2.938	22
$n-Bu_2Sn[S_2CN(C_4H_8)O]_2$	STB	141					23
$Ph_2 Sn(S_2 CNEt_2)_2$	cis	101.4	I	67.6, 67.6	2.173, 2.180	2.548, 2.613, 2.637, 2.790	14
Me ₂ Sn(S ₂ PMe ₂) ₂	STB	122.6	142.3	68.9	2.132	2.482, 3.334	24
$Me_2Sn(S_2PO_2C_2Me_4)_2$	STB	133.9	134.68	70.68	2.116	2.495, 3.130	25
$Ph_2Sn[S_2P(OEt)_2]_2$	STB	135	136.9	69.2, 69.7	2.10, 2.12	2.48, 2.49, 3.20, 3.23	26
$Ph_2 Sn[S_2 P(O-i-P_1)_2]_2$	trans	180	103.97	76.03	2.145	2.678, 2.689	8
$Me_2Sn(S_2AsMe_2)_2$	STB	121.8	139.18 8	70.26 8	2.108	2.471, 3.515	27
[MeOC(0)(CH,),], SnCl,	cis-Cl ₂	96.3	ų	73.3, 74.0	2.124, 2.127	2.520, 2.524 (X = O)	4
1		$(\mathbf{R} = \mathbf{CI})$				2.401, 2.409 (X = CI)	
$[NH_2C(O)(CH_2)_2]_2SnCl_2$	cis-Cl ₂	95.5	I	78.0, 78.7	2.059, 2.190	2.321, 2.327 (X = O)	q
1		$(\mathbf{R} = \mathbf{CI})$				2.460, 2.464 (X = CI)	
[EtOC(0)CH ₂ CH(CO ₂ Et)] ₂ SnBr ₂							
low m.p. isomer	cis-Br ₂	66	I	72, 72	2.26, 2.26	2.44, 2.46 (X = O)	c
		(R = Br)				2.516, 2.588 (X = Br)	
high m.p. isomer	cis-Br ₂	101	I	72	2.24	2.49 ($X = O$)	P
		$(\mathbf{R} = \mathbf{Br})$				2.504 (X = Br)	
$Ph_2Sn[3-(2-py)-2-C_4H_2S]_2$	cis	101.9	I	70.3	2.179	2.163 (X = C)	e
						2.560 (X = N)	
n-Bu ₂ Sn(5-NO ₂ -2-SPy) ₂	STB	129.2	151.2 8	59.5 8	2.162	2.477 (X = S)	28
						$2.77 (\mathbf{X} = \mathbf{N})$	
$Me_2Sn(2-SPyO)_2$	STB	138.9(2)	136.7(1)	72.0(1)	2.106(6)	2.536(1), 2.566(1) (X = S)	~
				73.5(1)	2.128(7)	2.356(3), 2.410(4) (X = 0)	

^a acac = acetylacetonate; dbzm = dibenzoylmethanate; trop = tropolonate; Oxin = 8-hydroxyquinolinate; 2-MeOxin = 2-methyl-8-hydroxyquinolinate; 3-(2-py)-2-C₄H₂S = 3-pyridyl-2-thienyl; 2-SPy = 2-pyridinethiolate. ^b P.G. Harrison, T.J. King and M.A. Healy, J. Organomet. Chem., 182 (1979) 17. ^c M. Yoshida, T. Ueki, N. Kasai, M. Kakudo, I. Omae, S. Kikkawa and S. Matsuda, Bull. Chem. Soc. Japan, 41 (1968) 1113. ^d Y. Kumura, T. Ueki, N. Yasuoka, N. Kasai and M. Kakudo, Bull. Chem. Soc. Japan, 42 (1969) 2479. ^e V.G. Kumar Das, J.M.T. Lo, Chen Wei and T.C.W. Mak, Organometallics, 6 (1987) 10. ^f This work. ^g Calculated from the atomic coordinates.

Fig. 1. Molecular structure of dimethylbis(2-pyridinethiolato-*N*-oxide)tin, with labeling and with thermal ellipsoids drawn at 35% probability level.

this distortion, a two-fold axis would pass through Sn and the mid-point of the line joining C(11) and C(12), and this would involve an overall molecular symmetry of C_{2r} . The plane comprising the tin and the four donor atoms [O(1), O(2), S(1) and S(2)] is flat (rms = 13×10^{-3} Å). The planes containing the atoms of the 2-SPyO ligands are approximately coplanar with this plane (Table 4).

In the idealized case of a six-coordinated diorganotin bischelate, the carbon-tin-carbon angle is 90° for the *cis* and 180° for the *trans* isomer. The angle of 138.9(2)° found for the title compound is close to the average of the two extremes. Table 5 gives a list of reported structural data for diorganotin bischelates and also includes data on three compounds in which the organic group attached to the tin carries a donor site capable of intramolecular coordination. If these three compounds as well those adopting unambiguous *cis* or *trans* geometries are left out of consideration, the C-Sn-C angles for the remainder fall in the range 122.6–156.9°. These latter structures have been generally labeled as 'distorted *trans*' structures, but no convincing reasons have been advanced for the gross deviations from idealized geometry. Table 5 also shows that the Sn-B bond lengths are normal, but the Sn-A bonds are much longer than the bonds normally found in, for example, four- or five-coordinate organotin compounds [33.34].

The geometry of the coordination polyhedron around the tin in $Me_2Sn(2-SPyO)_2$ is best described as a skew-trapezoidal bipyramid (STB). A schematic representation

Fig. 2. Schematic representation of the skew-trapezoidal bipyramidal geometry for $R_2Sn(A-B)_2$ compounds: $\phi_A = 1/2$ (angle A-Sn-A), $\phi_B = 1/2$ (obtuse angle B-Sn-B), $\phi_E = 1/2$ (angle R-Sn-R).

R_2 Sn(chelate) ₂	b	ϕ_A	ϕ_B	φ _E	(M−A)/ (M−B)	ref.
$Me_2Sn[MeC(O)N(H)O]_2 \cdot H_2O$	(1.17	73.4	144.8	78.4	1.12	10
	(1.17	73.1	144.7	78.4	1.11	
$Me_2Sn[MeC(O)N(Me)O]_2$	1.17	72.0	143.4	72.9	1.12	15
$Me_2Sn(NO_3)_2$	0.92	88.2	142.7	71.8	1.18	16
$Et-n-PrSn(1-MeOxin)_2^{a}$	1.17	69.6	140.2	72.6	1.24	17
$Me_2Sn(S_2COEt)_2$	1.06	75.2	138.8	65.0	1.25	18
$Me_2Sn(S_2CNMe_2)_2$	1.07	74.6	138.8	68.0	1.20	19
$Me_2Sn(S_2CNEt_2)_2$						
(monoclinic)	∫ 1.07	74.6	139.0	68.4	1.18	
	1.07	73.4	138.0	71.4	1.17	20
(triclinic)	1.08	73.8	138.6	71.2	1.16	20
(orthorhombic)	1.08	74.6	139.0	67.8	1.20	21
$Me_2Sn[S_2CN(CH_2)_4]_2$	1.09	72.4	137.9	68.6	1.17	22
$Me_2Sn(S_2PMe_2)_2$	1.16	71.2	140.0	61.3	1.34	24
$Me_2Sn(S_2PO_2C_2Me_4)_2$	1.17	67.3	138.0	67.0	1.25	25
$Ph_2Sn[S_2P(OEt)_2]_2$	1.16	68.4	137.9	67.5	1.29	26
$Me_2Sn(S_2AsMe_2)_2$	1.18	69.6	139.8	60.9	1.42	27
$n-Bu_2Sn(5-NO_2-2-SPy)_2^{a}$	1.00	75.6	135.1	64.6	1.12	28
$Me_2Sn(2-SPyO)_2^{a}$	1.19	68.4	141.1	69.5	0.93	This work

Table 6

Normalized bite and other repulsion-energy parameters for diorganotin bischelates

" Donor atoms of chelate are different.

of this is shown in Fig. 2 for the general case of a skew-trapezoidal bipyramidal bischelate, $[R_2Sn(A-B)_2]$. The organic R groups can be skewed towards or past the long A-A edge of the trapezium AABB. The stereochemistry can be completely specified [5] by the three angles, ϕ_A , ϕ_B and ϕ_E as defined in Fig. 2. An additional useful parameter introduced by Kepert [5] is the normalized bite b, a dimensionless quantity obtained by dividing the distance between the donor atoms of the chelate by the average of the metal-donor atom distances. The four parameters for the title compound and for other comparison structures are listed in Table 6. According to the repulsion energy model arguments [4,5], if $b = 2^{1/2}$, the ratio of the unidentate ligand repulsion energy coefficient to the total repulsion energy coefficient for the compound $[M(unidentate)_2(bidentate)_2]$ has the same value for both *cis* and *trans* octahedral structures. However, for lower normalized bites the above ratio of repulsion energy coefficients increases markedly and is particularly pronounced for the *trans* than the *cis* isomers, except when the *trans* slips into the STB geometry. For the undistorted *trans-O_k* complexes Me₂Sn(acac)₂ [6] and n-Bu₂Sn(dbzm)₂ [7], the b values are 1.36 and 1.34, respectively. Table 6 shows that the normalized bite for the title compound (1.19) is somewhat higher than that calculated for other bischelates. The odd entry is $Me_2Sn(NO_3)_2$ (b = 0.92); but, the quality of diffraction data for this compound is not high (R = 0.089) [16]. A further point arising from Table 6 is that the ratio of the tin-donor atom distances, Sn-A/Sn-B, is greater than unity for all the compounds listed, except for the title compound. For the general case of a trans- $[R_2Sn(A-B)_2]$ octahedral structure in which the donor atoms A, B of the chelating ligand are similar, the bond from tin to the negativelycharged B end is expected to be shorter than the dative Sn-A bond. This would favor skewing of the R groups towards the A-A edge if the normalized bite is small. Whereas, as a first approximation, nitrogen and oxygen may be considered to be similar, the combination S,N or S,O, with widely differing electronegativities and 'hardness' (C_B for sulfur is higher than that for oxygen or nitrogen [35]), may be expected to introduce some imbalance in the Sn-A/Sn-B ratio. Thus, the Sn-Sbonds [2.536(1) and 2.566(1) Å] in the title compound are not unexpectedly longer than the Sn-O bonds [2,414(4) and 2,356(3) Å], but it is noteworthy that the latter bonds are ca. 0.2 Å longer than the Sn-O bonds in the trans-[SnR₃] octahedral complexes, Me₅SnCl₂ · 2PyO (2.251 Å) [36] and [Me₅SnCl₃ · 2.6-Me₅PvO]₅ (2.289 Å) [37], in accord with the proposed STB geometry for the title compound. For the compound $n-Bu_3Sn(5-NO_2-2-SPy)_3$ for which a distorted tetrahedral structure has been suggested [28], the Sn - N bond (2.77 Å) is longer than the Sn - S bond (2.477 A) (Table 5). A closer examination of structural data suggests that an STB description would be more appropriate. This is borne out by the angular values $\phi_{\rm A}$, $\phi_{\rm B}$ and $\phi_{\rm L}$ for the compound as well as by the sum of the angles at tin in the trapezoidal plane (360.1°) . The long Sn–N bonds are readily explicable in terms of ring strain effects in the four-membered chelate ring of the structure and, additionally, as a result of the low degree of covalent character of the Sn-N bond [38]. Coordinate Sn-N bonds of comparable length have been previously described in the literature for Ph₃Sn(4-SPy) (2.62 Å) [39], MeSn(CH₂CH₂CH₂)₃N (2.62 Å) [40], (Ph₃SnCl₂) pyrazine), (2.782, 2.965 Å) [41] and (p-MeC₆H₄)Sn[3-(2-pyridyl)-2-thienvl] (2.841 Å) [42].

NMR spectra

The ${}^{2}J({}^{119}\text{Sn}-\text{C}{}^{-1}\text{H})$ value for the title compound in CDCl₃ is 82.5 Hz, a value intermediate between values recorded for *cis*-Me₂Sn(Oxin)₂ (68.7 Hz) [1] and *trans*-Me₂Sn(acac)₂ (99.3 Hz) [43]. A monodentate bonding mode for (2-SPyO) in solution could be ruled out since the coupling constant is unchanged in the presence of added pyridine. The predicted C-Sn-C angle from the measured ${}^{1}J({}^{119}\text{Sn}-{}^{13}\text{C})$ value of 698.2 Hz is 139.0°. Thus, the C₂Sn skeletal configuration, and by inference, the skew-trapezoidal geometry, apparently survives in solution. Similar retention of stereochemistry of the Me₂Sn skeleton has been observed for Me₂Sn(S₂CNEt₂)₂, for which the ${}^{1}J$ values in solution and in the solid state are 664 and 675 Hz, respectively [22]. In contrast, the triphenyl-, tricyclohexyl- and tribenzyl-tin derivatives of 2-pyridinethiol-*N*-oxide are considered to be tetrahedral in CDCl₃.

Mössbauer spectra

The tin-119m Mössbauer quadrupole splitting of the title compound is 3.29 mm s⁻¹. In the simple point charge approximation, the electric field gradient at tin is generated solely by the organic groups and the efffects of the other electronegative atoms are neglected [2]. The predicted C-Sn-C angle is 136.0°, compared to the observed value of 138.9(2)°. A *cis* configuration has been predicted for Ph₂Sn(2-SPyO)₂ (quadrupole splitting = 1.45 mm s⁻¹) [44]; clearly, the combined effect of the bulk of the phenyl group and small bite angle forces this compound to adopt the energetically favored *cis* configuration. The calculated density of 1.754 gm cm⁻³ for the title compound is high compared to that of other diorganotin bischelates of comparable elemental composition and molecular weight, but the momomericity of Me₂Sn(2-SPyO)₂ was established by the slope of the variable-temperature plot. $a - 1.96 \times 10^{-2}$ K⁻¹, which is in the region expected for monomeric organotins [45].

Acknowledgements

This research is supported by the Tin Industry (Research and Development) Board, Malaysia, the Institute of Advanced Studies of the University of Malaya and the Ming Yu Cultural Foundation, Hong Kong (Grant No. 636011000).

References

- 1 W.F. Howard, Jr., R.W. Crecely and W.H. Nelson, Inorg. Chem., 24 (1985) 2204.
- 2 T.K. Sham and G.M. Bancroft, Inorg. Chem., 14 (1975) 2281.
- 3 T.P. Lockhart, W.F. Manders and J.J. Zuckerman, J. Am. Chem. Soc., 107 (1985) 4546.
- 4 J.S. Tse, T.K. Sham and G.M. Bancroft, Can. J. Chem., 57 (1979) 2223.
- 5 D.L. Kepert, J. Organomet. Chem., 107 (1976) 49; Prog. Inorg. Chem., 23 (1977) 1.
- 6 G.A. Miller and E.O. Schlemper, Inorg. Chem., 12 (1973) 677.
- 7 G. Poli, C.J. Cheer and W.H. Nelson, J. Organomet. Chem., 306 (1986) 347.
- 8 K.C. Molloy, M.B. Hossain, D. van der Helm, J.J. Zuckerman and I. Haiduc, Inorg. Chem., 19 (1980) 2041.
- 9 I. Waller, T. Halder, W. Schwarz and J. Weidlein, J. Organomet. Chem., 232 (1982) 99.
- 10 P.G. Harrison, T.J. King and R.C. Phillips, J. Chem. Soc., Dalton Trans., (1976) 2317.
- 11 E.O. Schlemper, Inorg. Chem., 6 (1967) 2012.
- 12 W.K. Ng, Ph.D. Dissertation, Queen's University, Belfast (1981).
- 13 V.G. Kumar Das, unpublished results.
- 14 P.F. Lindley and P. Carr, J. Cryst. Mol. Struct., 4 (1974) 173.
- 15 P.G. Harrison, T.J. King and J.A. Richards, J. Chem. Soc., Dalton Trans., (1975) 826.
- 16 J. Hilton, F.K. Nunn and S.C. Wallwork, J. Chem. Soc., Dalton Trans., (1973) 173.
- 17 V.G. Kumar Das, Chen Wei, C.K. Yap and E. Sinn, J. Chem. Soc., Chem. Commun., (1984) 1418.
- 18 D. Dakternieks, B.F. Hoskins, E.R.T. Tiekink and G. Winter, Inorg. Chim. Acta, 85 (1984) 215.
- 19 T. Kimura, N. Yasuoka, N. Kasai and M. Kakudo, Bull. Chem. Soc. Japan, 45 (1972) 1649.
- 20 J.S. Morris and E.O. Schlemper, J. Cryst. Mol. Struct., 9 (1979) 13.
- 21 T.P. Lockhart, W.F. Manders, E.O. Schlemper and J.J. Zuckerman, J. Am. Chem. Soc., 108 (1986) 4074.
- 22 T.P. Lockhart, W.F. Manders and E.O. Schlemper, J. Am. Chem. Soc., 107 (1985) 7451.
- 23 L. Lokaj, V. Kettmann, V. Vrábel and E. Kellö, Acta Crystallogr., in press. Cited in J. Holeček and A. Lyčka, Inorg. Chim. Acta, 118 (1986) L15.
- 24 K.C. Molloy, M.B. Hossain, D. van der Helm, J.J. Zuckerman and F.P. Mullins, Inorg. Chem., 20 (1981) 2172.
- 25 H. Preut, V.-D. Ngo and F. Huber, Acta Crystallogr., Sect. C, C42 (1986) 809.
- 26 B.W. Liebich and M. Tomassini, Acta Crystallogr., Sect. B, B34 (1978) 944.
- 27 L.S. Dumitrescu, I. Haiduc and J. Weiss, J. Organomet. Chem., 263 (1984) 159.
- 28 G. Domazetis, B.D. James, M.F. Mackay and R.J. Magee, J. Inorg. Nucl. Chem., 41 (1979) 1555.
- 29 G.M. Bancroft, B.W. Davies, N.C. Payne and T.K. Sham, J. Chem. Soc., Dalton Trans., (1975) 973.
- 30 P.G. Harrison and T.J. King, J. Chem. Soc., Dalton Trans., (1974) 2298.
- 31 P.G. Harrison, T.J. King and K.C. Molloy, J. Organomet. Chem., 185 (1980) 199.
- 32 N.G. Furmanova, Yu.T. Struchkov, D.N. Kravtsov and E.M. Rokhlina, J. Struct. Chem. (Engl Transl.), 21 (1980) 766.
- 33 J.A. Zubieta and J.J. Zuckerman, Prog. Inorg. Chem., 24 (1978) 251.
- 34 P.J. Smith, J. Organomet. Chem. Libr., 12 (1981) 97.
- 35 J.E. Huheey, Inorganic Chemistry: Principles of Structure and Reactivity, Third Edition, Harper International SI Edition, Harper & Row, Publishers, Inc., New York (1983), pp. 312–322.
- 36 E.A. Blom, B.R. Penfold and W.T. Robinson, J. Chem. Soc. (A), (1969) 913.
- 37 S.W. Ng, C.L. Barnes, D. van der Helm and J.J. Zuckerman, Organometallics, 2 (1983) 600.
- 38 R.C. Poller, The Chemistry of Organotin Compounds, Academic Press, New York, 1970.
- 39 N.G. Bokii, Yu.T. Struchkov, D.N. Kravstsov and E.M. Rokhlina, J. Struct. Chem. (Engl. Transl.), 14 (1973) 458.
- 40 A. Tzchach and K. Jurkschat, Pure Appl. Chem., 58 (1986) 639.
- 41 D. Cunningham. T. Higgins and P. McArdle, J. Chem. Soc., Chem. Commun., (1984) 833.
- 42 V.G. Kumar Das, K.M. Lo, Chen Wei, S.J. Blunden and T.C.W. Mak, J. Organomet. Chem., 322 (1987) 163.
- 43 M.M. McGrady and R.S. Tobias, J. Am. Chem. Soc., 87 (1965) 1909.
- 44 D. Petridis and F.P. Mullins, Inorg. Chem., 9 (1970) 1270.
- 45 K.C. Molloy and K. Quill, J. Chem. Soc., Dalton Trans., (1985) 1417.